Long-term trends in selenium attenuation at a Central Appalachian surface mine

Paul Ziemkiewicz, Water Research Inst., WVU Barry Doss, Doss Engineering Inc.

Allegheny Plateau-pre mining

Hobet: a typical mountaintop mine: Oldest mining (1985) in foreground

「VIRGINIA UNIVERSITY Water Research Institute

Field studies: Identifying the time-[Se] relationship at the stream level. Muddy Ck.

2012 STUDY

- 1. Humidity Cells
- 2. Outlet Study
- 3. Stream Study

The ratio of sulfur to selenium release is nearly constant suggesting a mineralogical link

Iron selenide, replaces pyrite?
Fe_xS(Se)

average S/Se =1,833

Most of the selenium is probably in organic shale: where the pyrites are

Selenium kinetics were studied at three scales

- Laboratory: 145 weeks of weathering/leaching in humidity cells
- Field
 - Outlet study: 67 outlets sampled over an eight- year period representing 25 years post initial mining-5,388 samples
 - Watershed study: Stream samples over two years representing 25 years post initial mining

Organizing the 5,388 data points

- Individual outlets were sampled over a period of 1-8 years
- X axis represents years between permit date and outlet sampling date
- Y axis is the average total selenium concentration sorted per:
 - One year age classes (25)
 - Average age of each mine permit

Laboratory and field studies yield similar attenuation curves

5,388 data points sorted by age class-95% confidence intervals

ST VIRGINIA UNIVERSITY

/V Water Research Institute

Descriptive Model

Postulated Ferrihydrite Sequestration

- Occurs at year seven in all three studies.
- Coincides with maximum acidity generation (Meek, 1994)
- Saturation/exhaustion of ferrihydrite by year thirteen.
- Selenium then resumes according to the model
- The missing selenium appears to be permanently sequestered

In the absence of FeOOH, the Se/time relationship will be described by:

$$y = 0.0093x^3 + 0.49x^2 + 6.30x + 4.31$$

Conclusions (2012 study):

- Selenium increase rapidly over the first seven years after mining followed by a decline over the next fifteen years to below 5 $\mu g/L$
- The same trends pertained at three scales:
 - Laboratory
 - Outlet
 - Watershed

Conclusions (2012 study)

- Between 25 and 35% of selenium in southern West Virginia coal mine spoil is potentially mobile
- Pyrite sulfur is between 2,000 and 10,000 more prevalent in unweathered spoil than selenium
- Selenium weathers and leaches out of spoil about 10x faster than sulfur

Conclusions (2012 study)

- Laboratory results can be scaled to predict field results
- A substantial portion of the original selenium is 'lost' probably due to ferrihydrite sequestration
- Any spoil disturbance resets the clock

SELENIUM WEATHERING MODEL

Current study at Hobet:

- -198 total outlets
- -80 active outlets: currently monitored
- -118 inactive outlets: compliant, dried up, reconfigured
- -Sampled over 20 years
- -Metric: Average Se per outlet since outlet initiation

82.4% of outlets are compliant after 20 years

Se vs. years post outlet initiation

All Hobet outlets

			avg outlet	# in	% in
ре	ermit	# outlets	age yrs	compliance	compliance
WVC	0099392	117	11.1	72	62%
WV1	1016776	44	18.6	12	27%
WV1	1017225	7	8.9	4	57%
WV1	1021028	13	7.2	2	15%
WV1	1020889	17	5.9	6	35%
		198	10.3	96	48%

About half of the outlets fall below 5 µg Se/L within 30 years

All outlets should fall below 5 µg Se/L within 45-60 years

Rapid selenium attenuation explains why the three curves below look similar:

Se is not cumulative in CAPP mining

*Adjusted to estimate field concentrations

QUESTIONS?

Paul Ziemkiewicz, PhD, Director
West Virginia Water Research Institute
West Virginia University
pziemkie@mail.wvu.edu

