AMD Remediation at the Watershed vs Point-Source Scales: Costs and Benefits

West Virginia Mine Drainage Task Force Symposium Charleston, WV April 16, 2025

Definitions

regulated discharges

- point-source (NPDES)
- post-law (SMCRA Title V)
- WVDEP Office of Special Reclamation (OSR) Bond Forfeiture (BF) sites
- active discharges

point-source approach

At-source treatment of regulated discharges ONLY

unregulated discharges

- nonpoint-source
- pre-law (SMCRA Title IV)
- WVDEP Office of Abandoned Mine Lands and Reclamation (AML) sites

watershed approach

At-source AND/OR in-stream AND/OR centralized treatment of regulated AND unregulated discharges

Treatment Alternatives for AMD-impacted watersheds

Streams
 Impairment
 At-source treatment system
 AMD Sources
 BF
 AML
 Treatment
 At-source treatment system
 In-stream doser
 Consolidation
 Centralized treatment plant

Watershed Approach

Short-falls of the "point source" approach

Evaluating the "watershed" approach

Requirements

Identify and quantify ~90% of sources in watershed

Classify point vs non-point sources

Required treatment of point sources

Voluntary treatment of non-point sources

Document cost/benefit

Reduce load to meet TMDL/ designated use

Challenges

Regulatory (TMDL vs NPDES)

Jurisdiction (AML vs OSR vs active)

Financing (AML vs OSR vs private)

Higher initial capital cost

Benefits

Accounts for ALL pollutant sources in watershed

Restores more stream miles

Lower long-term treatment cost

Centralized AMD Treatment

Consolidates AMD sources to minimize treatment cost and maximize restoration

Case Study – Muddy Creek Watershed

Point-Source Approach

- Muddy Ck was responsible for ~50% of acid load to Cheat River
- Multiple OSR treatment sites
- Unregulated discharges (AML) responsible for >90% of pollutant load
- Expensive treatment without desired restoration

Watershed Approach

- T&T AMD Treatment Plant & in-stream dosers
- Consolidated deep mine AMD into centralized treatment
- Treated headwaters w/ in-stream dosers
- EPA granted in-stream variance
- Lower long-term treatment cost
- Improved restoration outcomes

Case Study – Muddy Creek Watershed

Cost

Restoration

EPA Case Study:

https://www.epa.gov/system/files/documents/ 2023-03/muddy-creek-watershed.pdf

In press: "Evaluation of Watershed-Scale Acid Mine Drainage Treatment in the Muddy Creek Watershed, West Virginia". Mine Water and the Environment.

- pH ↑: 4.3 to 7.2
- Fe ↓: 8.22 to 1.02 mg/L; Al ↓: 8.10 to 1.37 mg/L
- WVSCI ↑: 32 to 63
- Fish ↑: 0 to >130 (mottled sculpin, trout)
- Improved stream length ↑: 0 to 3.2 (Muddy) + 16 (Cheat)

Case Study – Muddy Creek Watershed

Evaluating the watershed approach in WV

- Project: ETD-119 Watershed-Scale Restoration
- Agency: WVDEP AML
- Funding: Bipartisan Infrastructure Law (BIL)
- Timeline: Nov 2023 Nov 2025
- Objective: Evaluate projects for watershed-scale AMD treatment
 - Identify, characterize, and prioritize watersheds
 - Develop conceptual plans for treatment
 - Focus on AMD impacts from AML
 - Collaborate with WVDEP, OSMRE, WVGES, WV watershed groups
 - Inform future use of WVDEP OSR and AML remediation funds

Project Approach

Watershed Characterization

- 19 watersheds (and counting!) across Northern WV
- >800 samples collected to date
- >250 distinct AMD sources
- 7 AMD treatment systems

Project Prioritization

Objective: Rank/prioritize watershed-scale projects

- Develop objective evaluation tool using weighted criteria
- Solicit input from stakeholders and decisionmakers
 - State/federal agencies
 - Watershed groups
 - Owner-Operators
- Use to "grade" individual projects

Project Prioritization

Critical Factors

- Jurisdiction
- Restoration impact
- Treatment feasibility
- Community buy-in

Prioritized Watersheds

- 1. Greens Run (Cheat)
- 2. Robinson Run (Mon)
- 3. Heather/Lick Run (Cheat)
- 4. Headwaters Deckers Creek (Mon)

Priority Watersheds

AMD Sources by Jurisdiction

Greens (n=18) Robinson (n=29) Active 38% AML 62%

Stream Impairments

Heather/Lick (n=43) Headwaters Deckers (n=34)

Watershed	Total Stream miles (mi)	Impaired stream miles (mi)	Percent impaired (%)
Greens Run	19.1	14.4	75
Robinson Run	4.4	4.4	100
Heather/Lick Run	11.8	9.6	81
Headwaters Deckers Creek	54.4	37.7	69
	Total	66.1	

Priority Watersheds

Pollutant Loads

Conceptual Designs

- Monthly sampling to characterize flows and concentrations.
- Piezometers to identify and monitor mine pools.
- Grouting to eliminate ancillary sources.
- Use of mine pools as conveyance and source consolidation.
- Capture of primary sources and conveyance to centralized treatment location.

Greens Run

Robinson Run

Heather/Lick Run

Headwaters Deckers Creek

Policy

- WRDA 2024 S.4367 signed 1/4/25.
- Sec. 1345 Ohio, Pennsylvania, and West Virginia
- Pilot program for federal assistance to treat abandoned mine drainage (1345.b)
- \$50MM authorized (1345.i) for 75% of design/construction costs (1345.f.3)
- Abandoned mine drainage includes bond forfeiture sites (1345.a.1.B)
- Prioritize centralized treatment and number of stream miles (1345.e)

Not addressed – regulatory consequence of mixing BF and AML treatment

Acknowledgements

Nate DePriest nate.depriest@mail.wvu.edu