West Virginia Mine Drainage Task Force

40th Annual Meeting

Morgantown, WV March 27, 2019

Experiences and Challenges with Selenium Treatment

Jim Constant, P.E. ERP Environmental Fund, Inc. Madison, WV (304) 369-8181

Selenium

- What is Selenium (Se)
 - A semi metallic element
 - On the Periodic Table near Sulfur and Arsenic
 - It mimics the characteristics of each
 - Usually associated with sulfide ores

Uses

 Electronics, photo conductors, optics, glass, ceramics, plastics, paints, anti-dandruff shampoos, and in nutritional supplements for animals and humans.

Why is Selenium regulated?

- Se in small amounts is needed for human and animals diets
 - FDA Issued Final Rule to Add Selenium to the List of Required Nutrients for Infant Formula
- Toxic in large doses:
 - Se can be toxic if ingested over periods of time at amounts only 5-10 times higher than those required for normal functioning.
 - Some selenium compounds are carcinogenic.
- Can be harmful to aquatic life and aquatic life's predators
 - Can cause birth defects and reproduction problems
 - Se bio-accumulates

- Selenium is a world wide problem
 - Some areas deficient must supplement
- Many Industries Affected
 - Mining
 - Coal ash ponds
 - Petroleum refineries
 - Solid waste land fills
- Selenium discharge limits
 - WVDEP adopted the USEPA National Recommended Water Quality Criteria in its water quality standards (WQS) (1992)
 - 5 ppb chronic criterion
 - 20 ppb acute criterion
 - Emerged as "parameter of concern" during preparation of programmatic EIS published in 2003 pursuant to a settlement arising from litigation surrounding mountaintop mining
 - WQS translates to "end-of-pipe" NPDES limits
 - 4.7 μg/L monthly average and 8.2 μg/L daily maximum
 - USEPA Drinking Water Standards
 - 50 ppb is protective of human health

Where is Selenium Found?

- Found in the dark shales (carbonaceous shales)
- Found in the coal
 - Partings and immediate roof and floor
- Sandstones and grey shales are not usual contributors
 - Unless there is embedded coal spars
 - Adjacent to coal seams
- Selenium laden rock is throughout the stratigraphic column in the coal regions
 - Not only a surface mining issue
 - Underground
 - Refuse

Speciation of Selenium

- Selenide (-2 valance)
- Elemental Selenium (zero valance) Inert
- Selenite (+4 valance) Less toxic for animals, more toxic for aquatics
- Selenate (+6 valance) More toxic for animals, less toxic for aquatics
- In southern West Virginia
 - Selenate: 90-95 %
 - Selenite: 5-6 %
 - Others: Few %

Selenium Reduction Methods

Have Tested:

- Reverse Osmosis (RO) (Pilot) (Filtering)
- VSEP (Vibrating RO) (Pilot) (Filtering)
- Fluidized Bed Reactor FBR (Pilot/full scale) (Biological)
- Ion Exchange (Multiple Resins) (Pilot) (Adsorbent)
- Electrocoagulation (Pilot)
- Gravel Bed Reactor GBR (Pilot) (Biological)
- In-situ Bioremediation (Pilot)(Biological)
- AB Met GE Water (Pilot) (Biological)
- Moving Bed Biological Reactor (Pilot) (Biological)
- Adsorbent Material (Chitosan, Zeolites) (Pilot)
- Ferrihydrite (Fe amendment added to Se material) (Pilot)
- Zero Valent Iron (ZVI) steel wool reels (Pilot/full scale) (chemical/adsorption)
- Iron Impregnated Foam (Pilot)
- Sulfur Modified Iron (SMI) (Pilot/full scale)

Have Reviewed:

- "Frontier" Water System (Similar to FBR technology)
- "Bugs in a Bag" (Bags of microbes/nutrients placed in ponds)
- Evaporation (Snow making type machine) (our climate is too humid)
- Phytoremediation (selenium reduction using vegetation)
- Electro Biochemical Reactor (EBR)(Adds electrons electrically to microbes)
- White Rot Fungus (Very new technology) (very little data)

Treatment System Issues

- From lab studies to full scale implementation
 - Is it scalable
 - Is it cost effective
- Vendor Selenium packages
 - Most are not turn-key packages
 - Most systems require pre-treatment/post treatment
- Would recommend Pilot Studies on site
 - Water variability

Se Reduction Systems using Zero Valent Iron (ZVI)

- Zero Valent Iron (ZVI) (Pilot)
 - Dr. Ray Lovett (WVU) ShipShaper, LLP
 - Presentation at the 2007 Mining Drainage Task Force Symposium
- Preforms better at lower pH (5-6 pH)
- ZVI generates ferrous iron
- Ferrous iron must be converted to ferric iron and removed

Apparatus 1 (circa 2007)

Apparatus 2 (circa 2007)

ZVI Reels

ZVI (Iron Media)

- ZVI pilot systems
 - No pH adjustment
 - No iron recovery
 - No electricity
- Steel wool reels (Global Material Technology)
 - Wound steel wool
 - 7' Diameter reels 21" thick
 - 2 reels per tank
 - 3 tanks in series
- Matric/ Liberty Hydrologic (ZVI impregnated foam)
 - Reticulated foam
 - ZVI particles glued into the foam
 - Rectangular tanks

Matric - Liberty Hydrologic Iron impregnated foam (no pH adjustment, no iron recovery initially)

Morphed to full scale systems

- Patriot Coal's IFSeR (Iron Facilitated Selenium Reduction System)
 - 200+ gpm systems
 - Adjust pH to 6 or lower
 - Iron recovery after iron conversion
 - 20 gpm/tank (nominal)
 - 2 NPDES outlets in compliance
 - "Special Master" Approved

IFSeR

• Pros:

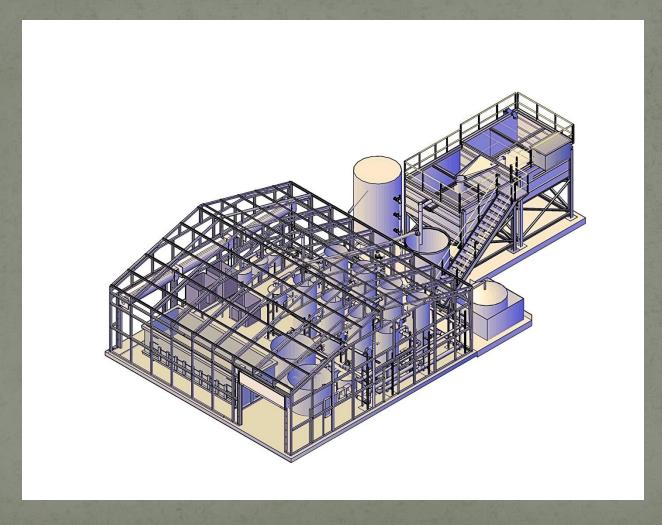
- Removes selenite and selenate
- Small foot print (locate near Se source)
- Relatively low capital cost
- Non-biological system
- Spent media will pass TCLP
- Iron sludge will pass TCLP
- Full system can be placed in a building
- Install parallel systems for higher flows or add additional tanks
- Single phase power for plant

• Cons:

- Fe sludge generation
 - Sludge moisture (must pass paint filter test prior to disposal)
- Requires chemicals (pH adjustment)
 - Safety (remote locations)
 - Site access for chemical deliveries
- High O/M
 - Multiple pumps (water, sludge, metering)
 - Labor intensive
 - Fe media change out frequency
 - Due to water short circuiting through steel wool
- Possible iron passivation

Sulfur Modified Iron – SMI (chemically bonded sulfur to iron)

• Patriot installed a full scale system - 8 tank system with pH adjustment and iron recovery


Pros:

- Removes selenite and selenate
- Longer iron media longevity
 - Not as labor intensive or as frequent media change outs
 - Minimal water bypass through media
 - Due to backwashing
- Open top Vessels
 - Scalable for larger flows/tank or add additional tanks for higher system flows
- Small foot print (locate near Se source)
- Relatively low capital cost
- Non-biological system
- Spent media will pass TCLP
 - Can be recycled for scrap iron
- Iron sludge will pass TCLP
- Full system can be placed in a building
 - Many different arrangements
- Treated 30+ ppb Se to compliant levels
- Fe generation less than IFSeR
- Currently being piloted in oil refineries and full scale project at coal ash pond closeout

SMI

- Cons:
- Same need for pH adjustment as IFSeR
- Three phase power for plant
- Influent water must be very low turbidity
- Finite Se retaining capacity on media
- Media cannot be regenerated

SMI Design

SMI System (Patriot Coal) (circa 2012)

Current Treatment Methods in the WV Coal Fields

- Biological Chemical Reactor (BCR)
- Fluidize Bed Reactor (FBR)
- MBBR (Moving Bed Bioreactor)
- Underground Injection
- Fish Studies WV Regulatory Changes (Fish Uptake Studies)
- Water Management

Fluidized Bed Reactor (FBR) Design Flow: 2800 gpm Capital Cost: \$+50 Million

Fluidized Bed Reactor (FBR)

- First full scale selenium reduction FBR in the USA
 - Court ordered
 - Two years for design/build
 - Pump water 2 miles to plant
 - 800' vertical lift
- Pros:
 - Controllable biology
 - Actively feed the microbes food and nutrients
 - Mets regulatory limits (4.7 ppb monthly)
- Cons:
 - Capital: cost prohibitive (+\$50 million)
 - O&M: cost prohibitive (\$+3 million per year)
 - Labor: manned 24/7/365 (10 technical personnel)
 - Chemical Usage: Intensive
 - Volume of sludge generated: Large

Fluidized Bed Reactor (FBR) Biological

- Microbes grow on burnt coconut shells
 - Granular activated carbon (GAC)
- GAC is levitated by water flow
 - Allows more contact area for the biomass growth
- About a 30 min. contact time (water in contact w/ microbes)
- "Bugs" are feed food and nutrients 24/7
- Water is heated if below 50 degrees F
- Three vessels do the selenium reduction
 - Remaining structures are pre and post treatment

Bio-Chemical Reactor (BCR) Design Flow: 950 gpm -6,200 Round bales of Hay Footprint: 6 acres

Biochemical Reactor (BCR)

• Pros:

- Most used type of selenium reduction in WV coalfields
- Less Capital Intensive than FBR/MBBR (still very expensive....)
- Can met regulatory limits (4.7 ppb monthly)
- Reduce selenite and selenate to elemental selenium

• Cons:

- Passive type system but actively managed
 - Pumping
- Potential biologic upsets must stay anaerobic
- Microbe's food is in-situ
- Sluggish response to change of flow and Se concentration
- Large footprint
- Public nuisance (smell hydrogen sulfide)
- Creates many by-products
 - COD, BOD, sulfides, low DO
- Very complex biology –always changing
- Initial startup water is problematic
- Media permeability
- Closure unknowns

BCR - During Construction

Aeration

BCR Biology

- How does a BCR work:
 - Naturally occurring microbes
 - Food is from the media (hay is the easiest to break down, wood is a longer term carbon source)
 - Respires the O₂ molecule from the contaminate
 - Order of reduction: Dissolved Oxygen \rightarrow Nitrates \rightarrow Selenates \rightarrow Sulfates
 - BUT microbes have to be in contact with the contaminates i.e. can have nitrates in effluent but are reducing selenium
- Many different types of microbes (Dependent on the water's ORP and contaminates)
 - Nitrate reducers
 - Selenium reducers (SeRB's)
 - Sulfate reducers (SRB's)
 - Methane producers
- Some microbes will respire individual contaminates some respire multiple
- "Welfare bugs" eating your food but not helping with selenium reduction
 - Fermenters breaking done the wood components
- Food is present at all times in the BCR
- Low Temperature
 - Makes microbes lethargic
 - But .. Bugs still working at 0.2 degree C water temperature (northern British Columbia)
 - Air temperature (-40 degrees C)

Design of BCR System

- Sizing calculations derived from pilot testing
 - Sizing based on selenium concentration and flow (loading: mg/day)
 - How much selenium is held in the media (retained: mg/day/cft) ????????
 - Calculate the required media needed
- Location of BCR:
 - near selenium source
 - on mine site
- System layout: Variable due to available foot print (topography)
- What media mix is used and what percentages????
 - Hay bales and mushroom compost
 - Hay, wood products, limestone chips, compost, manure, peat

BCR System Layout

- Two BCR cells (preferred)
 - Allows redundancy
 - Can design more cells depending on available footprint
 - Parallel flow regime
- Two polishing ponds in series (minimum)
 - First: Settling pond removes "Dead Bug Bodies"
 - Will re-oxidize the selenium if aerated
 - Second: Aeration pond (Eliminates COD/BOD, adds Oxygen)
 - Aerator Hp: based on COD calculations
- Water delivery to system
 - Gravity
 - Do not place in storm flow regime need regulated flow
 - Head pond (multiple concentrations and flows stabilized)
 - Pumped directly from pond to BCR
- Water Removal
 - Where does substandard (coffee) water report during startup
 - Effluent can be selenium reduced but still other wise impaired
 - Narrative water quality standard
 - Sulfides

BCR System Components

- Limestone gravel base
 - Maintains alkalinity in BCR
 - "French Drain" for system hydraulics
- Carbon source "Bug Food" also "Bug Apartments"
 - Round or square hay bales
 - Mixed media or mushroom compost on top of bales
 - Mixed media (hay, wood chips, sawdust, limestone chips, mushroom compost, peat)

BCR Issues

- Initial BCR startup
 - Generates tannins, high COD, high BOD
 - Termed "Coffee Water"
 - i.e. "like leaves decaying in a mud puddle"
 - Must be managed (cannot discharge to the environment)
 - Extremely high COD/BOD, initial dark color changing to yellow hues
 - May last weeks, months or longer.....
 - "Coffee water" pumped to back stacks until water is clear
- May generate large amount of sulfides
 - Since food is in-situ (bugs have a buffet), no control of microbes
 - Only system variable is "amount of time through the system"
 - Hydraulic Residence Time (HRT)
 - Plug flow "concept"
 - Due to fixed size of cell
 - Need more water per period of time
 - Only variable is THROUGHPUT (GPM)
- Permeability of Media
 - Media slimes over
 - Leaves, algae blockage

Health of the System

- ORP: -325 to -175 (mV)
 - Creates anaerobic environment
- Dissolved Oxygen (DO): Approach o.o mg/l
- Temperature rises through BCR cell
- Reduction in Nitrates
- Reduction in Sulfates
 - Generates hydrogen sulfide
 - Dependent on pH
- Very slow to react to changes (flow/ concentrations)
 - "Bugs" have to grow to meet demand
- Biology works
 - Chemistry/Engineering is the challenge

BCR's DO NOT LIKE CHANGE

Underground Injection (UIC)

- Injection of Selenium water into an underground mine
 - Must be permitted
 - Must be < 50 ppb Se
- Dilution
 - If and when it returns to the surface hopefully compliant
- Can also be used as conduit for transport to treatment system

Water Management

- Dilution of the selenium by mixing in ponds and then discharge through an approved NPDES outlet
- Mixing Zones
 - Transfer substandard water to a larger river via pipelines

Good Reference Information

- "Review of Available Technologies for the Removal of Selenium From Water"
 - Prepared for: North American Metals Council (June 2010)
 - By CH2MHill (T. Sandy and C. DiSante)
 - Update: 2013
- https://quicksilver.epa.gov/work/HQ/171055.pdf

Questions????

Jim Constant, P.E. ERP Environmental Fund, Inc. Madison, WV (304) 369-8181