Mitigation of Acidic Mine Drainage from Abandoned Hard Rock Mines in the Western US: A Colorado Perspective

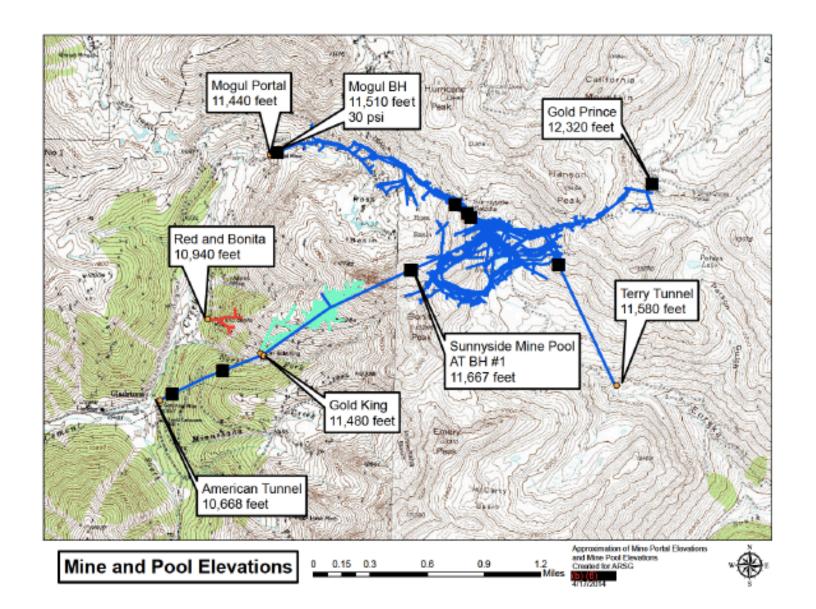
Linda Ann Figueroa, Ph.D., P.E., F. ASCE, BCEE
Civil and Environmental Engineering
Colorado School of Mines

Outline

 Impact of hardrock metal mining in Colorado

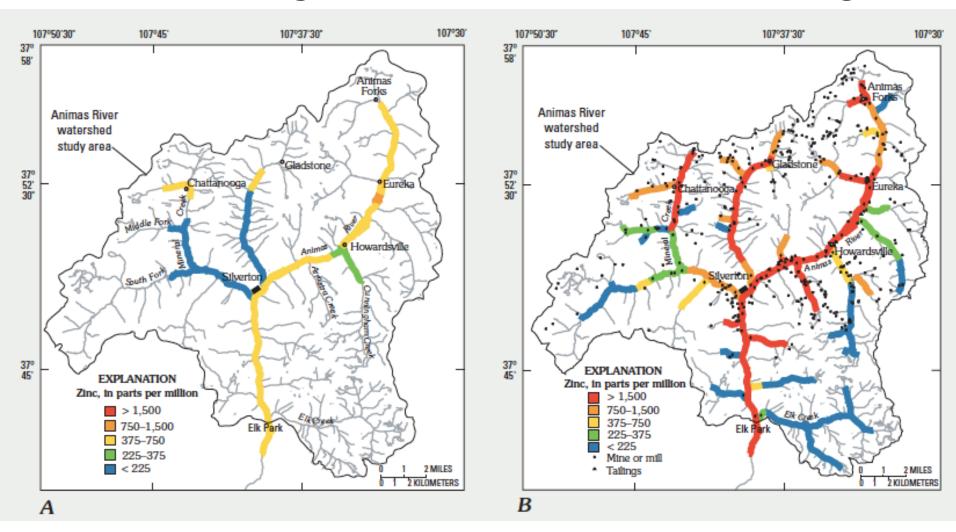
Remediation efforts

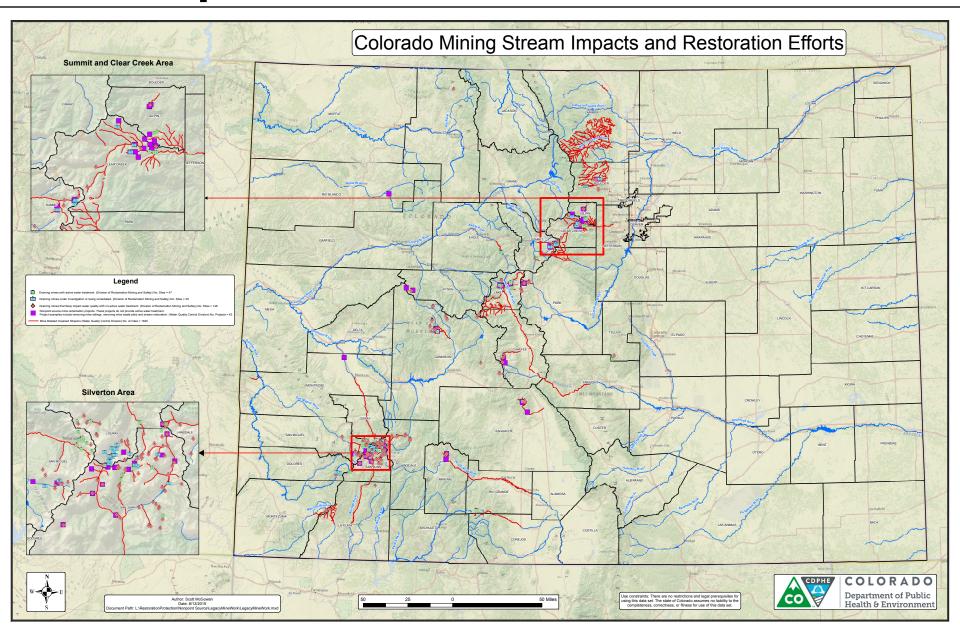
Path forward for remediation


Hardrock mining refers to extraction of ore that can only be mined by blasting or drilling to excavate hard minerals such as those containing metals like gold, copper, zinc, nickel and lead

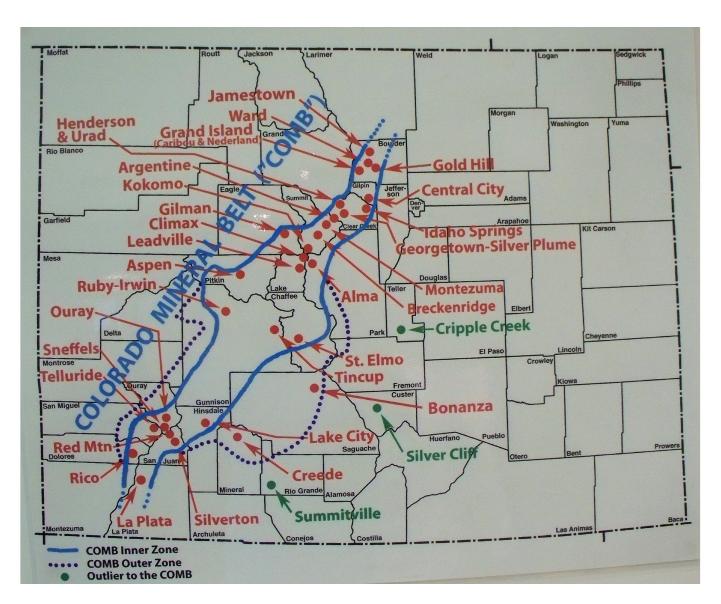
Gold King Mine Spill

August 5, 2015


Gold King Mine Relative Location

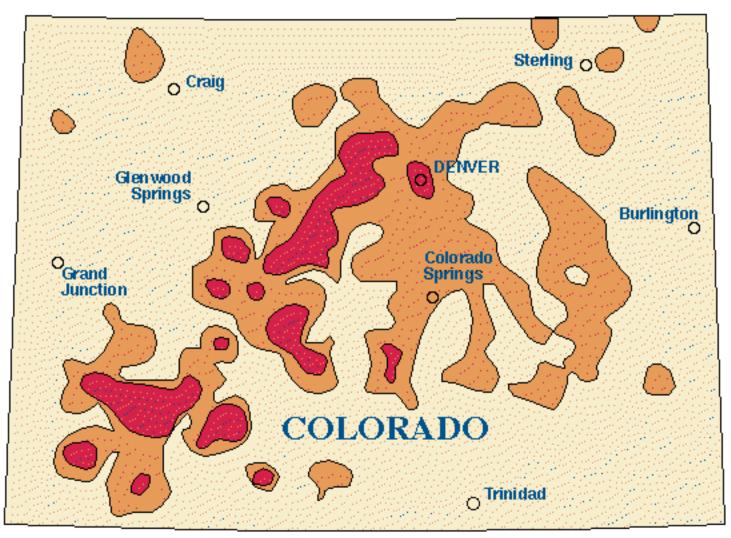

Upper Animas Sediment Zinc

Pre-mining

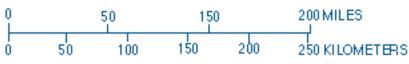

Post-mining

Reported Potential Sites = 230

Colorado Mineral Belt

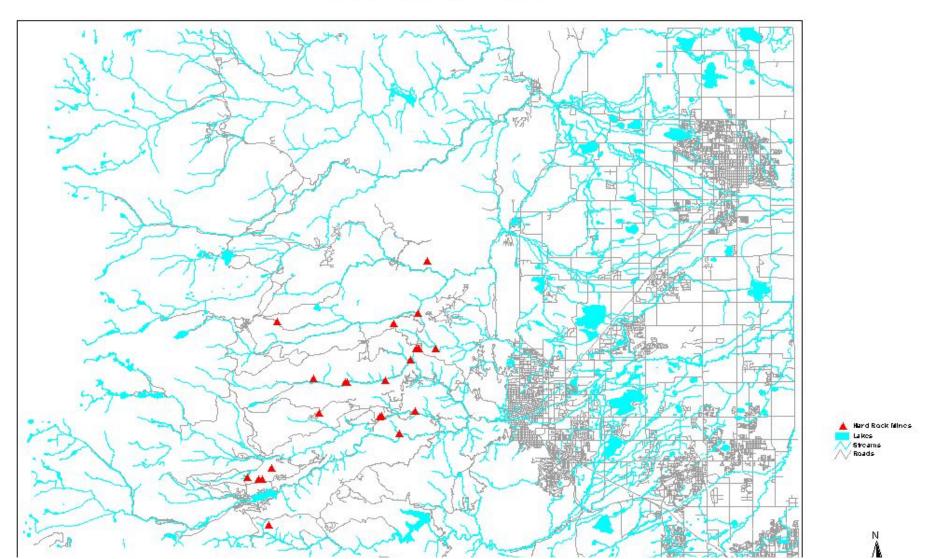


Historic Mining Districts in Colorado



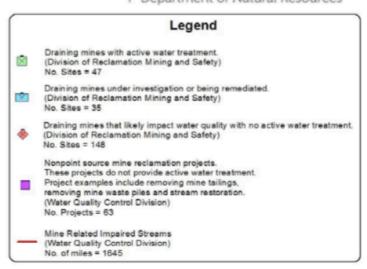
http://coloradogeologicalsurvey.org/wp-content/uploads/2013/06/ Historic_Mining_Districts_Statebase.jpg

Metal impacted sediment in Colorado



http://minerals.cr.usgs.gov/ ogips/world_version/
7process.html

Boulder County


Historic Hard Rock Mines

Boulder County Mines Identified by CDPHE/CODRMS

GIS Data to accompany
Colorado Mining Stream Impacts
and Restoration Efforts map

Status

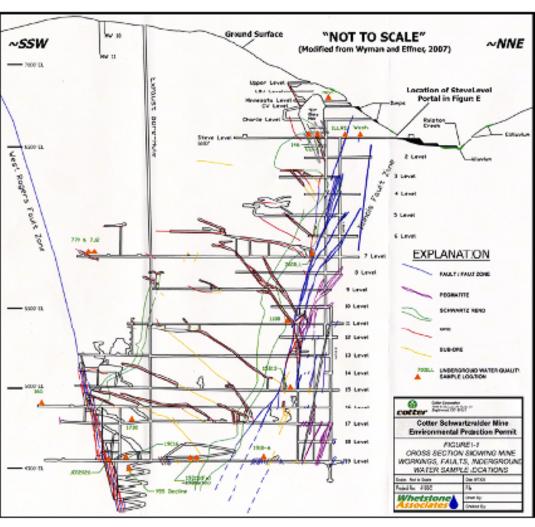
R - red symbols

G - green symbols

Y - blue symbols

Mine Name	County	X_UTM	Y_UTM	Status
Bueno	Boulder	465813.00	4441056.00	R
Captain Jack	Boulder	456512.00	4434620.00	Y
Emmett	Boulder	465946.00	4441622.00	R
Evening Star	Boulder	467779.00	4431631.00	R
Fairday	Boulder	463867.00	4440676.00	R
Golden Age	Boulder	469370.00	4441577.00	Υ

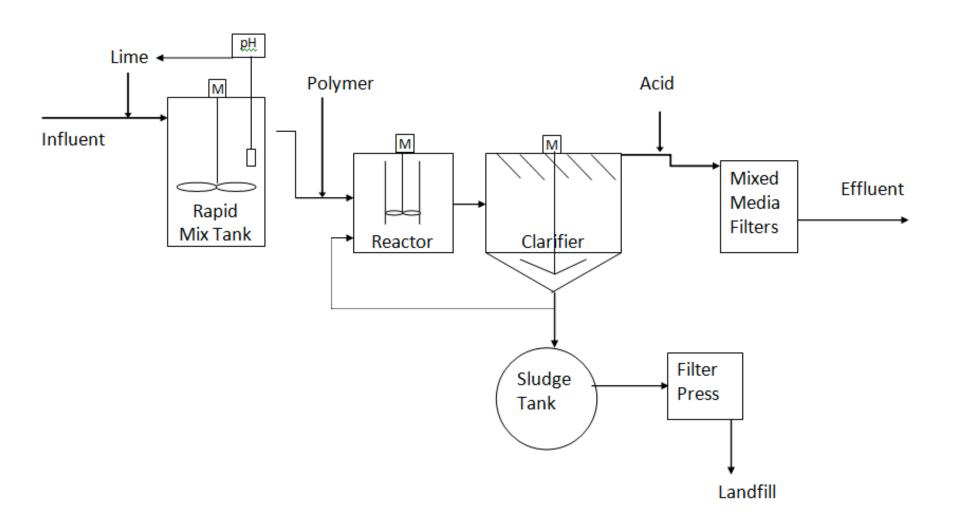
Mining Related Superfund Sites in Colorado


≈ 40% of Active Superfund Sites are Mining Related

- California Gulch/Yak Tunnel, 18 sq mi (As, Cd, Cu, Fe, Lead, Zn)
- Captain Jack Mill/Lefthand Canyon, 11 acres (Sb, As, Cd, Cu, Mn, Pb, Tl, Zn)
- Central City/Clear Creek, 400 sq mi (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Ag, Zn)
- Eagle Mine, 235 acre (As, Cd, Cu, Lead, Zn)
- Nelson Tunnel/Commodore Waste Rock, 5 acres
- Standard Mine (≈ 11,000 ft)10 acre (Cd, Cu, Fe, Mn, Pb, Zn)
- Summitville (≈ 11500 ft) 1400 acre (Al, Cd, Cu, Fe, Mn, Ni, Pb,
 Zn)
- Bonita Peak Mining District (proposed)

Impact of historic mining on water quality in Colorado is extensive

Ex-situ vs In-situ Treatment Remediation?

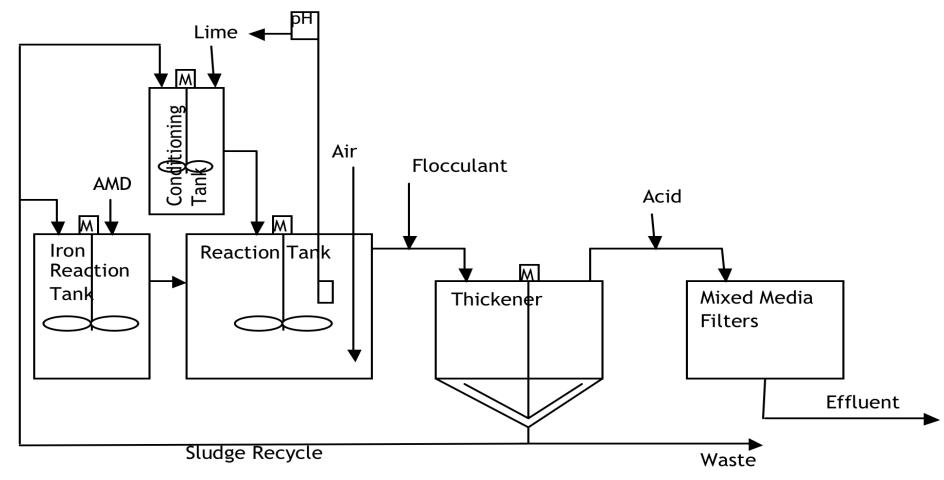

Active Mine Water Treatment (ex-situ)

Activate Mine Water Treatment at Superfund Sites in Colorado

Plant	Affected Waterway	Million Gallons of Water Treated per Year (Projected 2016)
Argo Tunnel	Clear Creek	118
Clear Creek	North Clear	105
North Fork Plant	Creek	
Eagle Mine	Eagle River	135
Summitville Mine	Alamosa	380
	River	
Yak Tunnel	Arkansas	425
	River	
Total		1163

100 MGY = 190 gpm = 720 Lpm = 0.27 MGD = 0.42 cfs

Argo Tunnel MWTP Original Design



Argo Tunnel Mine Water Treatment Plant Water Quality

Chemistry (µg/L)					
Parameter	Influent			Effluent	
	Minimum	Average	Maximum	Average	Limit
pH (s.u.)	2.8	2.96	3.4	7.81	6.5 - 9.0
Aluminum	7200	21200	35800	198	NA
Copper	1400	4740	7300	6	17
Iron	11400	137000	193000	66	15800
Manganese	30600	90600	130000	253	800
Zinc	13300	45900	70000	26	225
Flow (gpm)	180	263	>700	NA	700

Argo Tunnel MWTP Modified

ATWTF HDS Process Flow Diagram

Benefits of HDS over Conventional Operation Mode

Conventional and HDS Operating Parameters				
	Conventional precipitation operating parameters	HDS operating parameters		
Underflow Solids	3.8 %	23.7 %		
Filter Cake Solids	17.1 %	33.7 %		
Filter Cake Production	734 cf / MG	311 cf / MG		
Press Cycle	150 min	10 min		
Reaction pH	10.1	9.8		
Lime Dose (10% Ca(OH) ₂)	8.0 lb/1,000 gal	6.8 lb/1,000 gal		
Acid Dose (33% HCl)	0.34 lb/1,000 gal	0.13 lb/1,000 gal		
Polymer Dose	2.8 ppm	0.7 ppm		
Labor	6 FTE	5 FTE		
Cost	\$ 7.53/1,000 gal	\$ 5.75/1,000 gal		

Active mine water treatment is effective but expensive

Passive Mine Water Treatment (ex-situ)

Tiger Tunnel site

Tiger Tunnel average composition in 2011/2012

Parameter	mg/L
Aluminum	48
Copper	4.8
Iron	210
Mn	15
Sulfate	1,100
Zinc	16
pH range	2.4 to 2.7 (s.u.)

Tiger Tunnel flow in liters/min

<u>Year</u>	avg	min	max
2011	100	<0.1	580
2012	26	4	76

High iron low pH water and limestone

EBCT, hr	рН	Fe, mg/L	Al, mg/L	Comments
1.4	4-4.8	25	0	Santomartino et al. 2007 failure after 46 days
13-140	3.0	26	9	Hedin and Wolfe (no date) failure after 200 days, regenerated completely with flushing

Design (Cravotta 1999)

$$MS = Q(t_LC/x + t_R \rho_b/n)$$

$$V = MS/\rho_b$$

MS = mass of limestone, kg

 $Q = flow, m^3/s$

 t_1 = Residence time for longevity, s

 t_R = Residence time for reaction, s

C = effuent alkalinity, kg/m³

x = limestone purity, fraction

 $\rho_{\rm b}$ = Bulk density, kg/m³

n = porosity

V = volume of reactor, m³

For low influent Fe and AI (≤ 1-4 mg/L)

Modified design model v1

```
MS = Q(t_l C'/x + t_R \rho_b/n)
V = MS/\rho_h
MS = mass of limestone, kg
Q = flow, m^3/s
t<sub>1</sub> = Residence time for longevity, s
t_R = Residence time for reaction, s
C = effuent alkalinity, kg/m^3
C' = alkalinity required, kg/m<sup>3</sup>
x = limestone purity, fraction
\rho_b= Bulk density, kg/m<sup>3</sup>
n = porosity
V = volume of reactor, m^3
```

Values used in Modeling

$$Q = 6.3 \times 10^{-3} \, m^3/s$$

 $t_L = 1 \, yr = 3.15 \times 10^7 \, s$
 $C = 0.1 \, kg/m^3 \, as \, CaCO_3$
 $C' = 0.93 \, kg/m^3 \, as \, CaCO_3$
 $x = 0.95$
 $t_R = 15 \, hr = 54,000 \, s$
 $\rho_b = 1300 \, kg/m^3$
 $n = 0.5$

Comparative limestone system designs

Design	V, m ³	EBCT, hr
Cravotta*	70	30
Figueroa v1*	830	366
Tiger actual**	22	10

^{*} One year design life

$$EBCT = V/Q$$

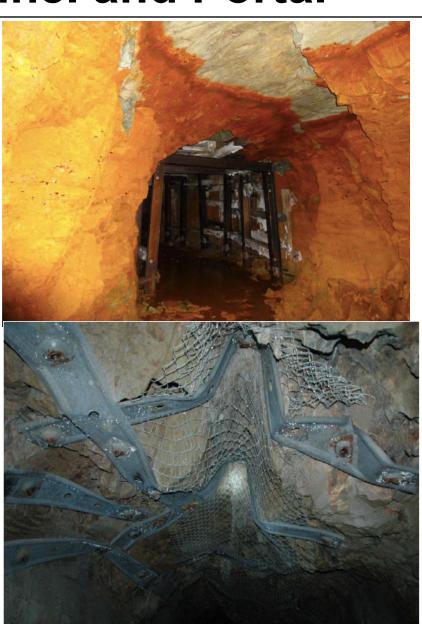
^{**} Design life not given

Tiger Tunnel Adit 2014

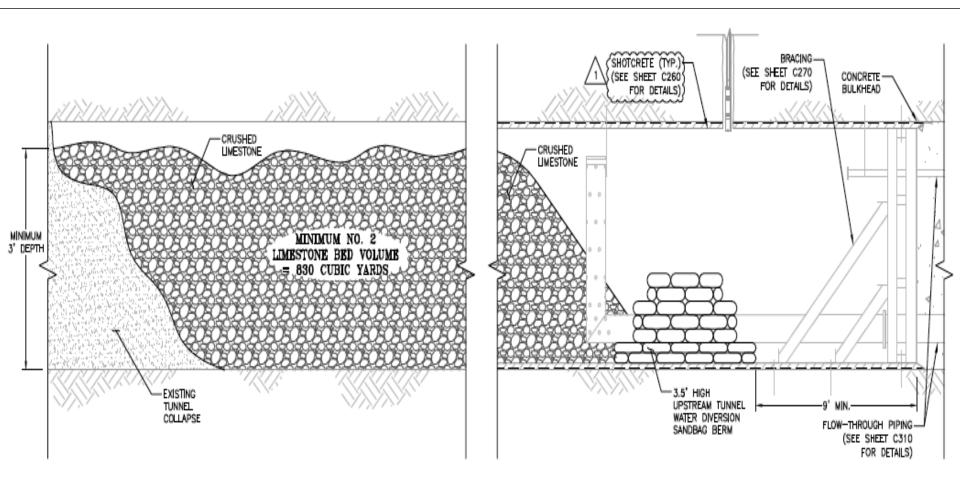
Tiger Tunnel system after 1 year

Limestone design lessons learned

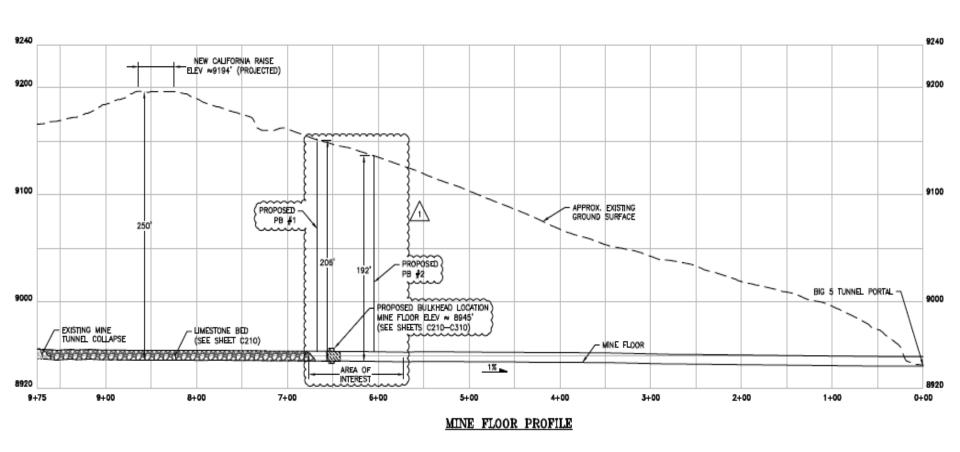
The limestone requirement is dominated by the influent metal acidity and needs to be explicitly included in design


An increase in limestone reactor reactor volume will be required to accommodate collection of iron and aluminium precipitates

Limestone dissolution kinetics for high iron and low pH water needs to be assessed to determine appropriate hydraulic retention time


Hybrid Mine Water Treatment (In-situ)

Big Five Tunnel and Portal



Proposed Captain Jack In-situ Remedy

Batch Treatability Dose: 0.6 mL 25% NaOH Calculated Limestone Mass: 1300 tons

Captain Jack Remedy Profile

Hydrobiogeochemistry is complex

```
Microbial ecology
       Indigenous community
       Redox reactions
       Nutrient availability
       Microbial competition
       By-product formation
Geochemistry
       Metal speciation
       Sorption
       Dissolution
       Precipitation
       Redox reactions (abiotic)
Physical
       Flow
       Bulk phase mass transport
       Interface mass transfer
       Mixing
```

Outcome of in-situ remedy pending

Managed passive treatment concept

- Improvement vs numeric goal
- Periodic addition of reagents
- Periodic maintenance
- Solar or wind energy enhanced
- Wireless monitoring

Use Multiple barriers

- 1. Hydrologic diversion of clean water
- 2. Flow control
- 3. Sequential treatment processes
 - a. pH adjustment
 - b. Iron and aluminum precipitation
 - c. Zinc, copper, lead precipitation
 - d. Nuisance by-product management

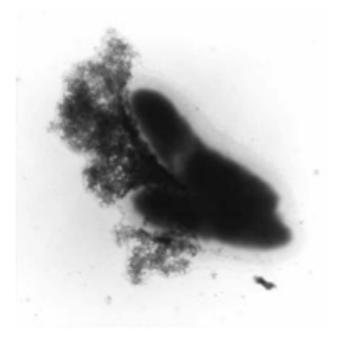
Future of managed passive treatment

- Managed passive treatment is a cost effective way to improve water quality
- Hydrologic management of clean water is paramount
- Integrated and systematic demonstrations needed

Take home messages

Challenges and opportunities exist in Colorado to improve water quality

Systems approach needed to understanding the complex interrelationships.


Framework of coupled microbial ecology, geochemistry and reactive transport critical

Elucidation of coupled processes needed to improve remediation schemes

Questions

Thank you for your attention

Microbes rock!

Linda Figueroa

<u>Ifiguero@mines.edu</u>