

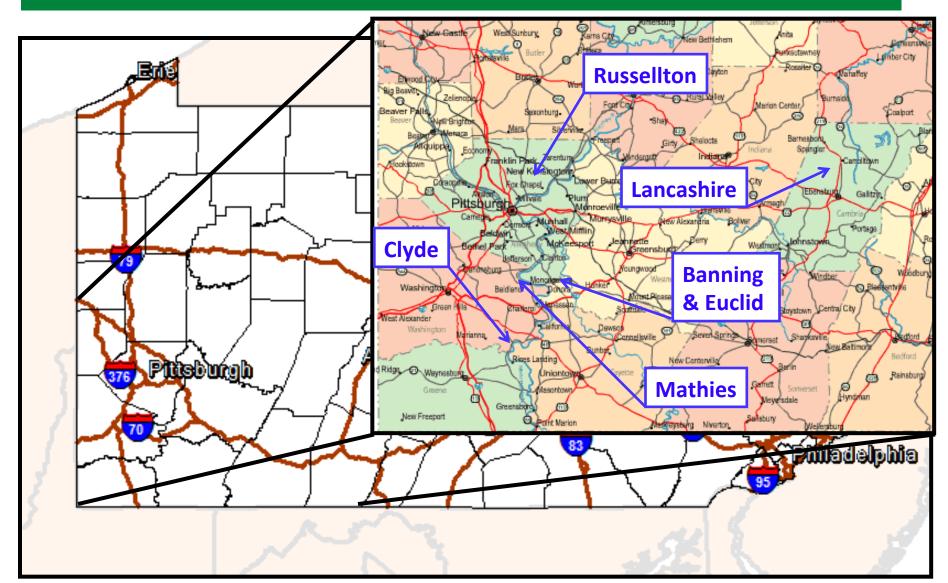
Bureau of Abandoned Mine Reclamation

TREATMENT PLANT OPTIMIZATION AND COST REDUCTION STRATEGIES AT SELECTED BANKRUPTCY MINE SITES IN PENNSYLVANIA

Brent Means P.G. USDOI-OSM, Rich Beam P.G. PA DEP BAMR & Don Charlton AMD Industries Inc.

West Virginia Mine Drainage Task Force Symposium March 29, 2016

Project Background


- Ensuring perpetual treatment of coal mine drainage (CMD), post-bankruptcy, is a challenging task
- DEP assumed treatment responsibilities after the bankruptcy of Barnes and Tucker Coal Company (2001), LTV Steel Corporation (LTV) in 2001, and Mon-View Mining in 2002
- Collectively, these facilities controlled five underground mine pools that encompass 71,000 acres and treat about 20.5 million gallons a day (MGD)
- DEP used historical treatment cost data to calculate the perpetual treatment liability; in all three cases, assets were inadequate
- Cost reduction and performance evaluation of these facilities is essential to maintain operations

Project Locations

Methodology

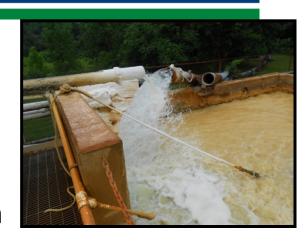
- A DEP/OSM team formed in 2011 to evaluate these facilities and identify potential cost saving strategies while preserving system effluent performance
- 5-Step Approach
 - 1. Determine current dosing rates
 - 2. Quantify chemical consumption
 - 3. Develop alternative strategies
 - 4. Pilot test alternatives
 - 5. Perform cost and performance comparison evaluation

Project Background

Evaluation Year	Treatment Facility	Year Constructed	Average Dsg. (GPM)	Original System Configuration	Treatment Trust
2011	Monview	2002	700	NaOH Pond Clarification	Mathies Trust
2012	Banning	1966	2,500	CaOH ₂ Clarifier	LTV Trust
2012	Euclid	1970	4,000	CaOH ₂ Clarifier	LTV Trust
2013	Russellton	1966	1,000	CaOH₂Pond Clarification	LTV Trust
2013	Lancashire	1974 2011	5,000	HDS CaOH ₂ Clarifier & Polishing Pond	Barnes & Tucker Trust
2014	Clyde	1997	1,000	HDS CaO/Slaker Clarifier	LTV Trust

Mon-View Mathies Site

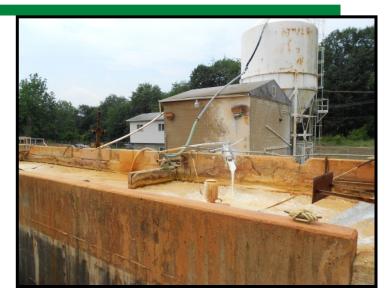
- 60% Flooded Pittsburgh Seam Deep Mine
- Mined by Mon-View Mining Corp & Predecessors 1944 - 2002
- Gravity discharge from drift varies from 500 to 3,000 gpm seasonally



- NaOH treatment
- Injected in to 500 ft long conveyance pipeline
- Flows into two oxidation/ settling ponds
- Treatment sludge hauled offsite
- Initially (2002) net acidic, now net alkaline

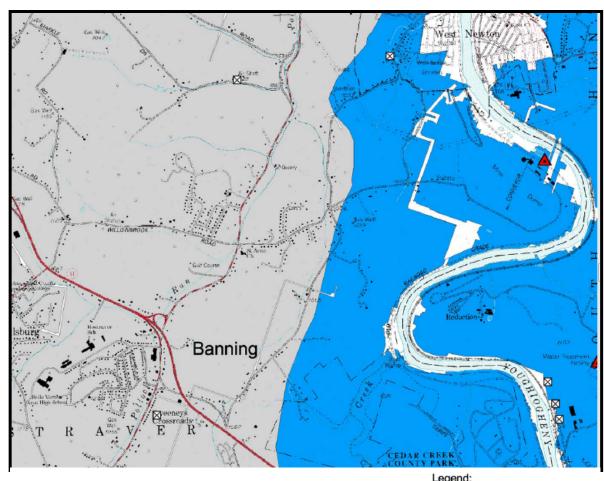
Banning Site

- Flooded Pittsburgh Seam Underground Mine
- Operated by LTV Steel Corp & Predecessors
 1889 1982
- Pumping and treatment required to prevent pool breakout into the Youghiogheny River in the town of West Newton PA

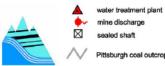

- Originally constructed in the mid 1960's
- Hydrated lime treatment w/ clarifier settling Constant inflow 2,300 gpm
- Sludge re-injected into mine

Euclid Site

- Operated in conjunction with the Banning Site
- Treats approx. 2 times the volume of Banning
- Similar influent water quality



- Originally constructed in the mid 1960's
- Hydrated lime treatment
 w/ clarifier settling only
- Constant inflow 4,500 gpm
- Sludge re-injected into mine


Banning Mine Pool

28,000 acres mined 43% percent flooded Republic Steel initiated treatment operations in 1966

Legend:

Russellton Site

- Flooded Upper Freeport Underground Mine Operated by Republic Steel Corp & Predecessors 1904 - 1982
- Average pumping rate of 1,000 to 1,200 gpm is required to control the mine pool elevation

- Hydrated lime treatment
- Dry Hydrate (Ca(OH)₂) addition directly into pumped influent
- 50 foot long mixing channel
- Flows into a single large oxidation/settling pond
- Treatment sludge periodically re-injected into mine

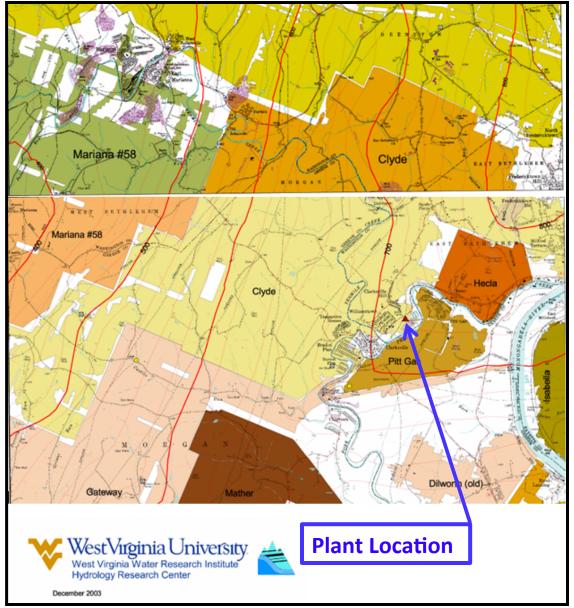
Lancashire Site

- Multiple interconnected underground mines (~ 15,000 acres)
 on the Lower Kittanning and Lower Freeport Coal Seams.
- Yearly average pumping rate of 4,500 to 5,000 gpm is required to control the mine pool elevation and prevent breakout into the West Branch Susquehanna River.

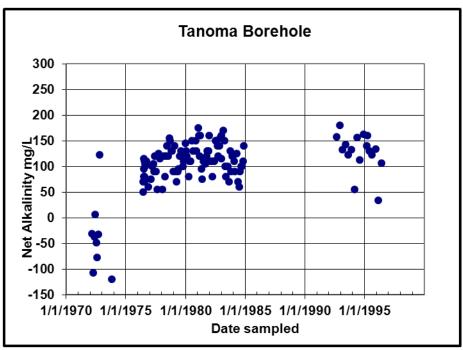
Lancashire Site

- In 2011, a new hydrated lime treatment facility was constructed to replace the original Barnes and Tucker system.
- The treatment process includes:
 - preaeration to exsolve CO_{2(aq)} from raw mine water
 - dense sludge recirculation
 - Polymer addition

Clyde Site


- Flooded Pittsburgh Seam underground mine
- Mined by LTV Steel Corp and predecessors from 1920 through 1992
- Pumping required to prevent breakouts into the Tenmile Creek watershed
- Quicklime treatment (CaO) with an onsite slaker system producing CaOH₂ slurry

Clyde Site



- 34,000 acres mined
- 87.5 percent flooded
- LTV Steel initiated pumping and treatment operations in 1997

Project Background

- CMD from flooded underground coal mines is notably different than other Pennsylvania CMD
- Infiltration of alkaline groundwater results in varying degrees of in-situ treatment of mine drainage
- Flooding also limits and isolates mine atmosphere development and alkaline conditions slows FeS₂ oxidation

Lancashire #15 Mine						
Date	рН	Alk	Acid	Fe	SO ₄	
12/4/1974	4.2	0	626	326	1,750	
6/20/2013	6.1	100	-68	34	380	
pH S.U. All c	pH S.U. All other values mg/l					

Clyde Influent Water Quality

Date	рН	Alkalinity	Acidity	Fe	Mn	Al	Sulfate
1/24/2000	6.4	500	154	>300	8.47	0.56	6,085
5/15/2002	6.4	514	- 42	248	4.61	0.48	5,400
6/21/2005	6.3	519	- 23	213	4.32	< 0.2	4,350
1/6/2011	6.4	520	- 203	194	3.34	< 0.2	4,010
10/6/2014	6.4	550	-200	190	3.5	<0.2	4,000
5/15/2015	6.6	510	-240	154	2.6	<0.2	3,989
1/19/2016	6.6	520	-260	148	2.6	<0.2	3,593

All values except pH expressed as mg/l

From 2000 to 2016

- ~ 50 percent reduction in dissolved iron
- ~ 70 percent reduction in dissolved manganese
- ~ 40 percent reduction sulfate

Influent Water Quality

Site	рН	Alkalinity	T. Fe	D. Fe	Mn	Al	Sulfate	TDS
Euclid	6.6	400	15	14.5	0.28	<0.2	850	1,900
Russellton	6.7	390	18.5	18.3	0.35	<0.2	165	750
Mathies	6.9	350	42	31	1.2	<0.2	960	1,500
Banning	6.6	410	13.1	13	0.33	<0.2	825	1,850
Lancashire	6.1	100	30.5	29.6	1.35	<0.2	400	725
Clyde	6.0	520	150	148	2.6	<0.2	3,593	7,100

All values except pH expressed as mg/l

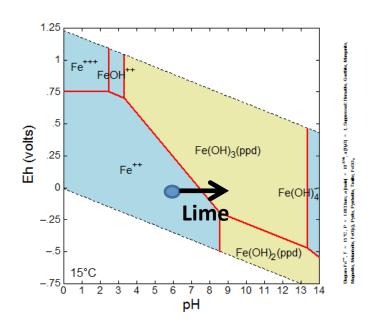
- All the treatment facilities used a pH adjustment strategy to achieve effluent goals
 - Russellton, Banning, Euclid, Clyde and the Lancashire site used Hydrated Lime systems
 - The Mathies site utilized Sodium Hydroxide
- Influent water quality had "evolved" at each site Treatment strategy had not

 pennsylva

Project Background

- The increase in pH affects Fe(III) and Al(III) solubility and causes precipitation
- Fe(II) remains stable and pH evolves to between ~6.0 and ~7.0
- The ensuing mine drainage requiring treatment is either net alkaline or slightly net acidic, near neutral pH containing elevated concentrations of Fe(II)
- Alkaline reagents (Ca(OH)₂, NaOH, etc.) are often selected to treat both water types, but for different reasons
- The alkaline reagent dosage requirement to achieve a desired target treatment pH is a function of the total hydroxylconsuming reactions that occur when pH is adjusted

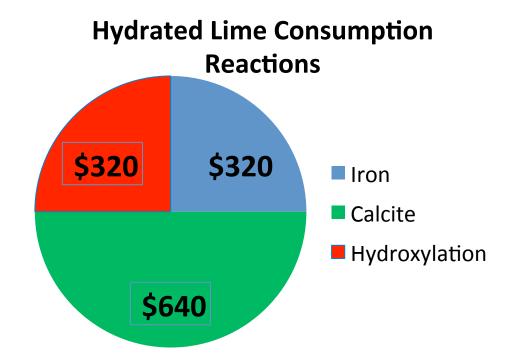
Sources of Alkali Chemical Consumption


- Fe(II) Removal
 - $\text{ Fe}^{2+} + 2\text{OH}^{-} = \text{Fe}(\text{OH})_{2}$
- Calcite Formation

$$- Ca^{2+} + OH^{-} + CO_{2(aq)} = CaCO_{3(s)} + H^{+}$$

$$- Ca(OH)_{2(s)} + CO_{2(aq)} = CaCO_{3(s)} + H_2O$$

- Reaction with OH- ion with aqueous species to form H₂O and other species
- $HCO_3^- + OH^- = CO_3^{2-} + H_2O$



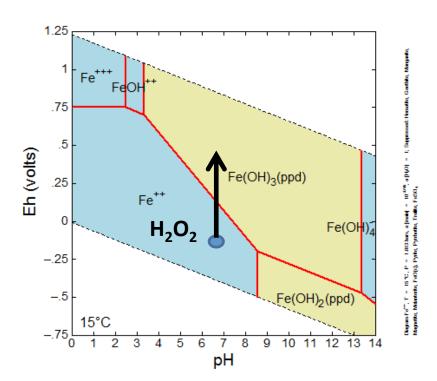
Alkali Chemical Consumption Analysis

Clyde Site - What is consuming Hydrated Lime?

- Under "normal" flow conditions (1,000 gpm) Treatment pH ~8.5
 - 8 Tons/day of CaO (Calcium Oxide) were needed to meet plant effluent goals
 - Current Quick lime (CaO) cost is \$160.00/ton

Alkali Chemical Consumption Analysis

Site	Treatment Chemical	Avg. Daily Chemical Dose Rate	Iron Removal	Calcite Formation	Hydroxylation Reactions
Mathies	NaOH	122 gal/day	50%	4.3%	45.7%
Banning	CaOH ₂	3.7 tons	9%	58%	33%
Russellton	CaOH ₂	1 ton	14%	31%	55%
Lancashire	CaOH ₂	5 tons	36%	29%	35%
Clyde	CaO	8 tons	25%	50%	25%


• Its important to understand what reactions are consuming chemical so cost-reduction strategies can be identified

Clyde Site Calcite Solubility					
Influent @ pH 6.4 pH increased to 8.4					
-0.3268	1.5565 s/sat				

Alternative Treatment Hydrogen Peroxide (H₂O₂)

- Near instantaneous iron oxidation without pH adjustment
- No nuisance reactions
- Only minor plant modifications required
- Additional electrical & sludge disposal savings

Russellton Site Performance Comparison

CaOH ₂	H ₂ O ₂
pH - 8.45	pH - 7.21
Total Fe - 2.18 mg/l	Total Fe – 0.94 to 2.4 mg/l
Total Mn – 0.044 mg/l	Total Mn - 0.25 mg/l

Chemical cost				
Lime	Peroxide			
\$160.00/day	\$37.00/day			
Lime cost = \$160.00/ton	50% peroxide cost = \$2.42/gal			

Clyde Site Performance Comparison

	Lime Treatment	Peroxide Treatment
Flow (GPM)	1,000	1,000
Influent/Effluent Field pH (mg/l)	6.62/8.58	6.84/6.47
Influent/Effluent Field Alkalinity (mg/l)	550/ <mark>199</mark>	560/ <mark>260</mark>
Influent/Effluent Total Iron (mg/l)	166/1.5	194/0.69
Influent/Effluent Total Manganese (mg/l)	3.48/0.32	3.02/2.76

Chemical cost				
Lime	Peroxide			
\$1,280.00/day	\$460.00/day			
Lime cost = \$160.00/ton	50% peroxide cost = \$2.42/gal			

Clyde Site

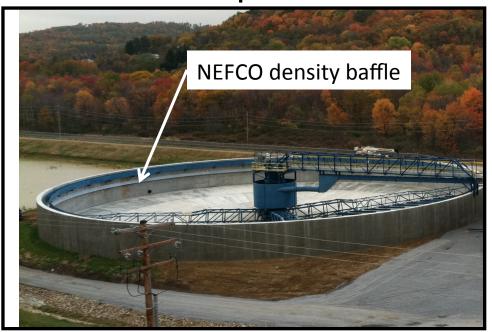
 The addition of an aerobic wetlands polishing pond, similar to the recent Flight 93 system re-design, has a probability of reducing both iron and manganese effluent concentrations

http://www.arcc.osmre.gov/programs/tdt/flight93.shtm

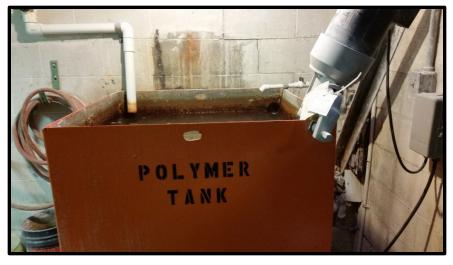
Lancashire Site Performance Comparison

Reagent	Dose	\$/day	Effluent pH	Effluent T- Fe (mg/L)	Effluent T- Mn (mg/L)	Influent/Effluent Alkalinity(mg/L)
Ca(OH) ₂	5.0 tons/day	\$800	8.1	1.5 - 3.0	0.49	120/93
50% H ₂ O ₂	90 gal/day	\$261	7.5	0.3 – 1.8	1.2	116/74

^{*} $Ca(OH)_2 = $160/ton, H_2O_2 = $2.90/gal$


Lessons Learned – Settling Solids

Pond Clarification


 H₂O₂ treatment is as good or better than pH adjustment without modifications.

Clarifiers

HDS / Solids re-circulation systems
 perform much better than older designs
 but all require polymer addition to
 match lime performance

Lessons Learned – Storage Equipment

Stainless vs. Double Wall Poly Tanks

Cost, Life Cycle & Repair

Storage Volume

Bulk Delivery Benefit
Tank Construction Materials Cost

Lessons Learned – Provider Options

Full Service Provider:

- Minimal capital investment
- Technical support and training
- Contractual obligations

Existing Plant Staff:

- Short term or spot market product pricing
- Equipment maintenance
- Long term cost advantage

Safety Issues

- Appropriate PPE for all Facility Personnel
- Safety Showers and Eyewash Stations
- Training
- Site Security

http://h2o2.evonik.com/product/h2o2/en/services/Pages/h2O2-safety-training-video.aspx

http://www.h2o2.com/technical-library/default.aspx?pid=66

Cost Reduction Summary

Additional Savings

Power Consumption

- Lancashire 2012 Electrical Cost (lime only) \$181,600
- Lancashire 2014 Electrical Cost (H₂O₂ only) \$161,700
- Lancashire 2015 Electrical Cost (H₂O₂ only) \$141,700

Sludge Volume

- Monview Pond de-sludging reduced from 2 times per year to once per year ~ \$30,000 savings
- Lancashire pumping to sludge disposal borehole reduced from 4 hours per day to 4 hours every fifth day

Recapitalization Costs

Project Summary

Evaluation Year	Treatment Facility	Treatment Trust	Annual Cost Savings
2014	Clyde	LTV Trust	\$347,000
2013	Lancashire	Barnes & Tucker Trust	\$213,000
2013	Russellton	LTV Trust	\$36,000
2012	Banning	LTV Trust	\$120,000
2012	Euclid	LTV Trust	\$220,000
2011	Monview	Mathies Trust	\$26,000
Total Annual S	Savings	\$962,000	
10-year savings at 3 percent investment return			\$11,200,000

