Application of Supported Liquid Membranes for Extraction of Rare Earth Elements from Acidic Coal Mine Drainage

Helen Hsu-Kim, Andrew Middleton

Civil & Environmental Engineering Duke University

Benjamin Hedin

Hedin Environmental Inc.

Acid Mine Drainage as a Rare Earth Element Resource

In Northern Appalachian region: 800-3000 tons REE per yr from AMD

Cravotta Appl Geochem 2008 Stewart et al., Intl J Coal Geol 2017 Vass et al., Mining, Metalurg, Explor. 2019

REE recovery from Acid Mine Drainage (AMD)

Scope of this study:

ivil & Environmental

Engineering

To extract REE directly from drainage fluids with supported liquid membranes

Challenges for REE extraction:

- Other major elements in AMD: Fe, Al, Ca, Mg, SO₄²⁻
- Selectivity for REE ions: $10^2 - 10^5$ -fold selectivity
- Relatively dispersed resource

Supported Liquid Membranes

Advantages:

- Reduced solvent usage
- Modular process design

Key unknowns:

- •Efficacy for dilute and variable feedstocks
- Mass transfer rates and selectivity?

di(2-ethylhexyl)phosphoric acid (DEHPA)

Supported Liquid Membranes for REE Recovery from AMD

Overall objective: To quantify the efficacy of SLM for REE recovery from AMD feedstocks

Approach:

- 1. Measure REE extraction flux vs. AMD composition
- Establish trends in metal ion selectivity (e.g., competition between Nd³⁺ and Fe³⁺)
- 3. Quantify product purity and yield rate

Study Design

Drainage collected from 7 abandoned coal mines in southwestern Pennsylvania

Raw AMD, mostly at inlet of treatment systems

AMD site locations (May 2022)

AMD site locations:

Grouped according to drainage composition

	AMD Site Name	рН	Fe	Al	Mn	Ca	Cŀ	SO4 ²⁻	Total REE	Flow Rate
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	L/min
Group 1- low pH,	McIntire	2.98	105	60	38	115	57	1629	1.5	143
high metals	DeSale	3.08	49	14	64	180	21	1864	0.78	
Group 2- medium pH and metals	Racic	3.19	1.1	7.1	12	59	76	913	0.17	
	Kentucky Hollow	3.24	2.7	13	6.5	152	124	848	0.24	582
	US 91	3.27	1.5	27	6.6	105	19	831	0.38	64
Group 3- high pH, low metals	Milk Run	3.30	1.1	13	1.1	118	3.51	698	0.12	1220
	Sterrett	3.52	0.9	25	1.83	115	2	556	0.23	378

**Also note the wide rate of flowrates!

Neodymium flux across the membrane

 $\ln\left(\frac{C}{C_0}\right) = -\frac{A}{V}Pt$ Permeability
coefficient **P** (L m⁻² h⁻¹)

A=membrane area V=feedstock volume

REE flux increases with pH of AMD feed

Major metal cations in AMD

Impacts of AMD aging on extraction flux

Neodymium permeability decreases with the formation of Fe(III)

Duke

SLM separation of synthetic binary mixtures of Nd and Fe(+III):

Middleton & Hsu-Kim, ACS ES&T Engr, 2023

Cation competition and REE extraction rates from AMD

Bi-directional cation competition effect

Duke Civil & Environmental Engineering

Product purity and daily yield

Unit Processes in the Extraction REE from Wastes

Supported Liquid Membranes would allow for reduced solvent usage in the REE extraction step

Scaling up SLM for AMD Feedstocks

DEPARTMENT OF

Engineering

Civil & Environmental

Feasibility of SLM for REE Recovery:

- Membrane configuration
- Type of membrane and carrier
- Longevity and reusability of the liquid membrane
- Waste disposal

Summary

Supported Liquid Membrane Extraction of REE from Acid Mine Drainage

- Wide variation of AMD composition (REEs and major solutes)
- SLM extractions: increased REE flux with high pH, low metals
- Cation competition effect: controls selectivity and REE recovery efficiency
- Yield rate and purity depends on AMD flow rates and relative REE concentrations

Duke | DEPARTMENT OF Civil & Environmental Engineering

Adsorption of REE to suspended colloids?

Middleton & Hsu-Kim, ACS ES&T Engr, 2023

Ultracentrifuge + Filter (0.02 µm Anodisc)

95-105% of Nd remains in the aqueous phase

Fe colloids on membrane surface

surface of 'spent' PVDF membrane

Scanning electron microscopy

Fe intensity (EDS mapping)

flux controlled by metal-ligand competition at the membrane interface

Smith et al., ES&T, 2019