

Nitrate removal from waste rock drainage with denitrifying bioreactors at the Kiruna iron ore mine

Roger B. Herbert¹, Tomas Salmí², Mattias Ylipää² ¹Uppsala University, Uppsala, Sweden ²LKAB, Kiruna, Sweden

Nitrogen in mine waste

- Much of the nitrogen in mine drainage is derived from ammonium nitrate – based explosives used in the mine
- Undetonated ammonium nitrate dissolves in mine drainage and adsorbs to waste rock.
- On average 12 g N per ton waste rock at Kiruna mine.

Rainwater and snowmelt leach out nitrogen compounds from waste rock deposits. Risk for toxic effects from ammonia (NH_3) and nitrite as well as eutrophication in aquatic environments

Passive, low cost, low maintenance methods are needed to treated many small diffuse releases from waste rock deposits

Nitrate removal through denitrification

- Nitrate (NO₃⁻), the most common form of nitrogen in the mine drainage, is removed through the process of denitrification
- Denitrification is a microbial process requiring the presence of a community of denitrifying bacteria and organic carbon (CH₂O) for metabolic energy and cell growth

$$4NO_3^{-} + 5CH_2O \rightarrow 2N_2(g) + 4HCO_3^{-} + H_2CO_3 + 2H_2O$$

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

nitrate nitrite nitric nitrous nitrogen
oxide oxide gas

Denitrifying woodchip bioreactors

- Excavation lined with an impermeable geomembrane and filled with pine wood chips and a small amount of active sewage sludge.
- Organic material functions as a carbon and energy source for the denitrifying bacteria.
- Bioreactors are 44 m long, 7 m wide, and 2 m deep (excluding cover)

Bioreactor placement

- Three bioreactors have been constructed so as to treat drainage from the "Triangle area" waste rock deposit (0.56 km²)
- Purpose is only to treat
 ~ 40% of the drainage
- Based on previous studies, optimal treatment is achieved at flows
 < 0.5 L/s per bioreactor

System design

- Groundwater reservoir collects groundwater seepage, which consists almost exclusively of leachate from waste rock dump
- Water pumped from a pumping chamber through gate valves to the bioreactors.
- Water discharges from each bioreactor through a monitoring chamber and further to a drainage ditch.

Bioreactor 3 construction

Sensors:

Flow determined from water depth with ultrasound sensor over a H-flume in monitoring chamber

Water temperature and flow

Nitrogen removal in bioreactor

Waste rock drainage is a $Ca-SO_4$ -rich water with neutral in pH

WVTF

DOC and phosphorus

- DOC and dissolved P concentrations increase through bioreactors
- Release of DOC and P decreases from 2019 to 2021

Decrease in nitrate removal efficiency

WVT

2024

Challenges

- Decreasing woodchip reactivity with time
- Low temperature in groundwater
- Hydrogen sulfide production
- Microbial community needs time to establish itself
- Preferential flowpaths

Thanks for listening! Questions?

Published work to-date:

Hellman et al. (2024) Microbial succession and denitrifying woodchip bioreactor performance at low water temperatures,

DOI: 10.1016/j.jenvman.2024.120607

Wang et al. (2023) Multirate mass transfer simulation of denitrification in a woodchip bioreactor, DOI: 10.1016/j.jhydrol.2023.129863

