Floodplain Reconnection Stream Restoration Increases Water and Nutrient Retention

Presenter: Dr. Natalie Kruse Daniels

Annika Gurrola, Tatiana Burkett, Red Pazol, Nora Sullivan, Jen Bowman, Kelly Johnson, Morgan Vis

Ohio University

Floodplain Reconnection and Restoration

• Purpose

- To establish a connection between stream channel and the surrounding terrestrial environment
- Why we're using it
 - Manage stream loss from longwall mining
 - Mitigation for mining & oil and gas:
 - Increased water storage
 - Increased nutrient storage
 - Increased resilience to flooding
 - Reduced erosion

Historically, streams in this area behaved this way.

Cooper, Hiscock, & Lovett, 2019

Increased water storage

Reduced sediment flux into channel

Less SW nutrient export DS

Less sediment export DS

Ecosystem Concepts

FPOM is fine particulate organic matter; CPOM is coarse particulate organic matter; P/R is the production/respiration

Sediment Dynamics

Excess sediment can cause: turbid water, habitat destruction, lower biodiversity

Sediment can harbor excess nutrients

Velocity and volume of water moves sediment at different rates

Nutrient Cycling

Nutrients are vital for ecosystem health, but too much or too little can be harmful to biodiversity

Many different biotic and hydrologic factors control rates of nutrient retention, removal, and release

McMillan and Noe note that nutrient processing rates were primarily controlled by physical channel features

Simplified channel structure does not lead to a connected system like varied, natural streams do

Objectives

Characterize impact of the floodplain reconnection method in longwall mined watersheds by comparing the following characteristics of restored and unrestored sites

- Water storage
- Sediment retention and export
- N and P retention and export in the sediment and surface water
- Carbon accumulation and retention

Methods

- Flow and Water Level
- Water and Sediment Chemistry
 - Nutrients
 - Carbon
 - Pore Water
- Carbon Inputs

Study Sites

Primary headwaters

Headwaters

Wadeable

Flow and Water Storage

- Channel flow with flume, SonTek, or pygmy meter
- Salt tracing to measure transient flow with YSI meter

Meteorological Data

- Waynesburg, PA Weather Station
- Rainfall Data
- Calculated Antecedent Precipitation Index

Water & Sediment Chemistry

- Grab water samples taken seasonally 2020 -2024
 - Field parameters
- Biweekly ater TOC summer & fall 2022
- Sediment samples gathered with a trowel seasonally 2020 - 2024
 - C, N, P
 - Grain size

Pore Water

- Measured dissolved N and P concentrations in upper layer
- Micro-rhizon samplers collected water from upper soil layer
- Soil temp, pH, DO, ORP, conductivity, moisture content determined by Orion meter

Carbon Inputs and Stores

- Large Woody Debris index following U.S. Forest Service methodologies
- Leaf Litter Input
- Soil Carbon by Loss on Ignition Method

Results Rainfall, Flow, Water Storage Nutrients in Water, Pore Water, and Sediment

Carbon Input and Storage

Water Storage:

Wadeable Streams

Water Storage:

Headwaters Streams

Water Storage:

Primary Headwaters Streams

Sediment Dynamics

• More fine-grained sediment in restored sites

Nutrients

- Sediment
 - More N and P in restored sites

Sediment Total Phosphorus Concentration By Restoration Status

Sediment Carbon

Greater C in larger restored sites

Sediment Nitrogen

Greater N in restored sites

Sediment Phosphorus Greater P in restored sites

Phosphorus export / sqmi

Nutrient Flux

Variable with flow and season, not restoration status

Nutrients in Water: Few differences between restoration or size

Floodplain Nutrient Interactions: PW and SW

Total Organic Carbon - Water Summer and Fall 2022

Large Woody Debris Index

Leaf Litter Input

No statistical relationship between leaf litter input and TOC or Restoration Status

Soil Organic Matter

No statistical relationship between soil organic matter and TOC.

Soil organic matter vs. Restoration status p<0.05.

Restoration Status

Conclusions

Water storage

Slightly increased in restored sites

Sediment

- Higher proportion of fine-grained sediment at restored sites
- DS TSS load was driven by flow

Nutrients

- Sediment: Richer in N and P in restored sites
- Surface water N&P seasonal or flow dependent
- P storage in wetlands (pore water)

Conclusions

Total organic carbon

 Dependent upon season (greater in the growing season), not restoration status

Carbon Input

 Not significantly different between restoration status

Soil organic matter

 Greater in restored sites than unrestored

Acknowledgements

PA Department of Environmental Protection

Western Pennsylvania Conservancy

Western Pennsylvania Conservancy

Thank you! Questions?

Natalie Kruse Daniels krusen@ohio.edu